7 5 8 3 4

论文已发表


注册即可获取德孚的最新动态



IF 收录期刊





更多详情 >>



作者优惠计划

Favored Author Program


很高兴为我们的作者提供一种切实的方法以支持开放获取,并鼓励教师和研究人员通过开放获取模式,尽可能广泛地推广他们的作品。


作者优惠计划的成员将获得:


文章发表费(APC) 10% 的折扣


这 10% 的折扣从您加入 “作者优惠计划” 之时开始,并将适用于之后提交的所有论文



*若要加入“作者优惠计划”,您需要已经在德孚医药出版社发表过论文,或为我们进行过同行评审。作者必须在提交论文之前注册该优惠计划,折扣不能追溯应用于已提交的论文




更多详情 >>



已发表论文

结合网络药理学和实验验证探索芦荟素抗胃癌的药理作用机制

 

Authors Gao J, Yang S, Xie G, Pan J, Zhu F 

Received 1 March 2022

Accepted for publication 30 May 2022

Published 20 June 2022 Volume 2022:16 Pages 1947—1961

DOI https://doi.org/10.2147/DDDT.S360790

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Tin Wui Wong

Purpose: This study was designed to evaluate the pharmacological mechanisms of Aloin against gastric cancer (GC) via network pharmacology analysis combined with experimental verification.
Methods: Using network pharmacology methods, the potential targets of Aloin and targets related to GC were screened from public databases. The protein–protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to predict the core targets and pathways of Aloin against GC. The expressions of major targets predicted by network pharmacology in normal stomach tissues and GC tissues and their relationships with overall survival of GC were searched in GEPIA, HPA and DriverDBv3 database. The results of network pharmacology analysis were verified by in vitro experiments.
Results: A total of 129 potential targets were retrieved by searching the intersection of Aloin and GC targets. PPI network analysis indicated that 10 targets, including AKT1 and CASP3, were hub genes. GO enrichment analysis involved 93 biological processes, 19 cellular components, and 37 molecular functions. KEGG enrichment analysis indicated that the anti-cancer effect of Aloin was mediated through multiple pathways, such as PI3K-AKT, FoxO and Ras signaling pathway. Among them, the PI3K-AKT signaling pathway, which contained the largest number of enriched genes, may play a greater role in the treatment of GC. The validation of key targets in GEPIA, HPA and DriverDBv3 database showed that the verification results for most core genes were consistent with this study. Then, the results of in vitro experiment indicated that Aloin could inhibit proliferation of NCI-N87 cells and induce cell apoptosis. The results also showed that Aloin could decrease the mRNA and protein expressions of PI3K and AKT, suggesting that Aloin can treat GC by inducing cell apoptosis and regulating the PI3K-AKT signaling pathway.
Conclusion: This study identified the potential targets of Aloin against GC using network pharmacology and in vitro verification, which provided a new understanding of the pharmacological mechanisms of Aloin in treatment of GC.
Keywords: gastric cancer, Aloin, pharmacological mechanisms, network pharmacology, experimental verification