已发表论文

结合网络药理学和实验验证探索芦荟素抗胃癌的药理作用机制

 

Authors Gao J, Yang S, Xie G, Pan J, Zhu F 

Received 1 March 2022

Accepted for publication 30 May 2022

Published 20 June 2022 Volume 2022:16 Pages 1947—1961

DOI https://doi.org/10.2147/DDDT.S360790

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Tin Wui Wong

Purpose: This study was designed to evaluate the pharmacological mechanisms of Aloin against gastric cancer (GC) via network pharmacology analysis combined with experimental verification.
Methods: Using network pharmacology methods, the potential targets of Aloin and targets related to GC were screened from public databases. The protein–protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to predict the core targets and pathways of Aloin against GC. The expressions of major targets predicted by network pharmacology in normal stomach tissues and GC tissues and their relationships with overall survival of GC were searched in GEPIA, HPA and DriverDBv3 database. The results of network pharmacology analysis were verified by in vitro experiments.
Results: A total of 129 potential targets were retrieved by searching the intersection of Aloin and GC targets. PPI network analysis indicated that 10 targets, including AKT1 and CASP3, were hub genes. GO enrichment analysis involved 93 biological processes, 19 cellular components, and 37 molecular functions. KEGG enrichment analysis indicated that the anti-cancer effect of Aloin was mediated through multiple pathways, such as PI3K-AKT, FoxO and Ras signaling pathway. Among them, the PI3K-AKT signaling pathway, which contained the largest number of enriched genes, may play a greater role in the treatment of GC. The validation of key targets in GEPIA, HPA and DriverDBv3 database showed that the verification results for most core genes were consistent with this study. Then, the results of in vitro experiment indicated that Aloin could inhibit proliferation of NCI-N87 cells and induce cell apoptosis. The results also showed that Aloin could decrease the mRNA and protein expressions of PI3K and AKT, suggesting that Aloin can treat GC by inducing cell apoptosis and regulating the PI3K-AKT signaling pathway.
Conclusion: This study identified the potential targets of Aloin against GC using network pharmacology and in vitro verification, which provided a new understanding of the pharmacological mechanisms of Aloin in treatment of GC.
Keywords: gastric cancer, Aloin, pharmacological mechanisms, network pharmacology, experimental verification