已发表论文

Lygodium(海金沙属)根在体内外对细胞色素 P450 3A 酶的抑制作用

 

Authors Zhou Y, Hua A, Zhou Q, Geng P, Chen F, Yan L, Wang S, Wen C

Received 16 February 2020

Accepted for publication 27 April 2020

Published 19 May 2020 Volume 2020:14 Pages 1909—1919

DOI https://doi.org/10.2147/DDDT.S249308

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Editor who approved publication: Dr Yan Zhu

Purpose: The aim of the present study was to investigate the interactions of the main components of Lygodium  root (ie, p-coumaric acid, acacetin, apigenin, buddleoside and Diosmetin-7-O-β-D-glucopyranoside) with cytochrome P450 3A enzyme activity both in vitro and in vivo.
Methods: In vitro inhibition of drugs was assessed by incubating rat liver microsomes (RLMs) with a typical P450 3A enzyme substrate, midazolam, to determine their 50% inhibitory concentration (IC50) values. For the in vivo study, healthy male Sprague Dawley rats were consecutively administered acacetin or apigenin for 7 days at the dosage of 5 mg/kg after being randomly divided into 3 groups: Group A (control group), Group B (acacetin group) and Group C (apigenin group).
Results: Among the five main components of Lygodium  root, only acacetin and apigenin showed inhibitory effects on the cytochrome P450 3A enzyme in vitro. The IC50 values of acacetin and apigenin were 58.46 μM and 8.20 μM, respectively. Additionally, the in vivo analysis results revealed that acacetin and apigenin could systemically inhibit midazolam metabolism in rats. The Tmax, AUC(0-t) and Cmax of midazolam in group B and group C were significantly increased (< 0.05), accompanied by a significant decrease in Vz/F and CLz/F (< 0.05).
Conclusion: Acacetin and apigenin could inhibit the activity of the cytochrome P450 3A enzyme in vitro and in vivo, indicating that herbal drug interactions might occur when taking Lygodium  root and midazolam synchronously.
Keywords: Lygodium  root, drug–drug interactions, rat liver microsomes, midazolam, metabolism




Figure 4 (A) Mean plasma concentration-time profile of midazolam after...