已发表论文

慢性癫痫大鼠的微小 RNA 表达谱及通过靶向 miR-344a 在癫痫发作时的神经保护作用

 

Authors Liu XX, Liao YH, Wang XX, Zou DH, Luo C, Jian CD, Wu Y

Received 4 May 2017

Accepted for publication 20 June 2017

Published 31 July 2017 Volume 2017:13 Pages 2037—2044

DOI https://doi.org/10.2147/NDT.S141062

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Prof. Dr. Roumen Kirov

Peer reviewer comments 2

Editor who approved publication: Professor Wai Kwong Tang

Abstract: MicroRNA (miRNA) is believed to play a crucial role in the cause and treatment of epilepsy by controlling gene expression. However, it is still unclear how miRNA profiles change after multiple prolonged seizures and aggravation of brain injury in chronic epilepsy (CE). To investigate the role of miRNA in epilepsy, we utilized the CE rat models with pentylenetetrazol (PTZ) and miRNA profiles in the hippocampus. miRNA profiles were characterized using miRNA microarray analysis and were compared with the rats in the sham group, which received 0.9% physiological saline treatment at the same dose. Four up-regulated miRNAs (miR-139–3p, -770–5p, -127–5p, -331–3p) and 5 down-regulated miRNAs (miR-802–5p, -380–5p, -183–5p, -547–5p, -344a/-344a–5p) were found in the CE rats (fold change >1.5, <0.05). Three of the dysregulated miRNAs were validated by quantitative real-time polymerase chain reaction, which revealed an outcome consistent with the initial results of the miRNA microarray analyses. Then, miR-344a agomir was intracerebroventricularly injected and followed by PTZ induction of CE models to investigate the effect of miR-344a in chronic neocortical epileptogenesis. After miRNA-344a agomir and scramble treatment, results showed a restoration of seizure behavior and a reduction in neuron damage in the cortex in miRNA-334a agomir treated rats. These data suggest that miRNA-344a might have a small modulatory effect on seizure-induced apoptosis signaling pathways in the cortex.
Keywords: microRNA, chronic epilepsy, miR-344a, epigenetics, apoptosis