视频

Graphene and Graphene Oxide as a Support for Biomolecules in the Development of Biosensors

 

Authors Shahriari S , Sastry M, Panjikar S, Singh Raman RK

Received 26 August 2021

Accepted for publication 2 October 2021

Published 16 November 2021 Volume 2021:14 Pages 197—220

DOI https://doi.org/10.2147/NSA.S334487

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Professor Israel (Rudi) Rubinstein

Abstract: Graphene and graphene oxide have become the base of many advanced biosensors due to their exceptional characteristics. However, lack of some properties, such as inertness of graphene in organic solutions and non-electrical conductivity of graphene oxide, are their drawbacks in sensing applications. To compensate for these shortcomings, various methods of modifications have been developed to provide the appropriate properties required for biosensing. Efficient modification of graphene and graphene oxide facilitates the interaction of biomolecules with their surface, and the ultimate bioconjugate can be employed as the main sensing part of the biosensors. Graphene nanomaterials as transducers increase the signal response in various sensing applications. Their large surface area and perfect biocompatibility with lots of biomolecules provide the prerequisite of a stable biosensor, which is the immobilization of bioreceptor on transducer. Biosensor development has paramount importance in the field of environmental monitoring, security, defense, food safety standards, clinical sector, marine sector, biomedicine, and drug discovery. Biosensor applications are also prevalent in the plant biology sector to find the missing links required in the metabolic process. In this review, the importance of oxygen functional groups in functionalizing the graphene and graphene oxide and different types of functionalization will be explained. Moreover, immobilization of biomolecules (such as protein, peptide, DNA, aptamer) on graphene and graphene oxide and at the end, the application of these biomaterials in biosensors with different transducing mechanisms will be discussed.
Keywords: functionalization, immobilization, oxygen functional groups, bioconjugate