已发表论文

IL-6/STAT3/PXR 信号通路介导的急性淋巴细胞白血病肾 MRPs 转运体的下调

 

Authors Zhou Y, Nie AQ, Chen S, Wang MM, Yin R, Tang BH, Wu YE, Yang F, Du B, Shi HY, Yang XM, Hao GX, Guo XL, Han QJ, Zheng Y, Zhao W

Received 11 March 2021

Accepted for publication 6 May 2021

Published 25 May 2021 Volume 2021:14 Pages 2239—2252

DOI https://doi.org/10.2147/JIR.S310687

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Professor Ning Quan

Purpose: Considering prior investigations on reductions of renal multidrug resistance-associated protein (MRP) 2 and 4 transporters in mice with acute lymphoblastic leukemia (ALL), we sought to characterize the underlying mechanisms responsible for IL-6/STAT3/PXR-mediated changes in the expression of MRP2 and MRP4 in ALL.
Subjects and Methods: ALL xenograft models were established and intravenously injected with methotrexate (MTX) of MRPs substrate in NOD/SCID mice. Protein expression of MRPs and associated mechanisms were detected by Western blotting and immunocytochemistry. Plasma concentrations of MTX were determined using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS).
Results: Plasma IL-6 levels in patients with newly diagnosed ALL were increased compared to children with pneumonia. Similarly, plasma IL-6 levels in ALL, ALL-tocilizumab (TCZ, an IL-6 receptor inhibitor) and ALL-S3I-201 (a selective inhibitor of STAT3) mice were increased compared to the control group. The MRP2, MRP4, and PXR expression in HK-2 cells treated with IL-6 were decreased, whereas the p-STAT3 expression was significantly increased compared to the control group results. These results are consistent with clearance of MRPs-mediated MTX in the ALL group. These effects were attenuated by blocking IL-6/STAT3/PXR signaling pathway.
Conclusion: Inflammation-mediated changes in pharmacokinetics are thought to be executed through pathways IL-6-activated pathways, which can facilitate a better understanding of the potential for the use of IL-6 to predict the severity of adverse outcomes and the major implications on potential ALL treatments.
Keywords: disease-induced pharmacokinetic change, renal transporters, inflammatory cytokines, clearance