论文已发表
注册即可获取德孚的最新动态
IF 收录期刊
基于中国回顾性队列研究的列线图和预测 2 型糖尿病肾病进展的风险表的开发和外部验证
Authors Gao YM , Feng ST, Yang Y, Li ZL, Wen Y, Wang B, Lv LL, Xing GL, Liu BC
Received 2 December 2021
Accepted for publication 2 March 2022
Published 14 March 2022 Volume 2022:15 Pages 799—811
DOI https://doi.org/10.2147/DMSO.S352154
Checked for plagiarism Yes
Review by Single anonymous peer review
Peer reviewer comments 2
Editor who approved publication: Prof. Dr. Juei-Tang Cheng
Purpose: Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide. Risk assessment provides information about patient prognosis, contributing to the risk stratification of patients and the rational allocation of medical resources. We aimed to develop a model for individualized prediction of renal function decline in patients with type 2 DKD (T2DKD).
Patients and Methods: In a retrospective observational study, we followed 307 T2DKD patients and evaluated the determinants of 1) risk of doubling in serum creatinine (Scr), 2) risk of eGFR< 15 mL/min/1.73m2 using potential risk factors at baseline. A prediction model represented by a nomogram and a risk table was developed using Cox regression and externally validated in another cohort with 206 T2DKD patients. The discrimination and calibration of the prediction model were evaluated by the concordance index (C-index) and calibration curve, respectively.
Results: Four predictors were selected to establish the final model: Scr, urinary albumin/creatinine ratio, plasma albumin, and insulin treatment. The nomogram achieved satisfactory prediction performance, with a C-index of 0.791 [95% confidence interval (CI) 0.762– 0.820] in the derivation cohort and 0.793 (95% CI 0.746– 0.840) in the external validation cohort. Then, all predictors were scored according to their weightings. A risk table with the highest score of 11.5 was developed. The C-index of the risk table was 0.764 (95% CI: 0.731– 0.797), which was similar to the external validation cohort (0.763; 95% CI: 0.714– 0.812). Additionally, the patients were divided into two groups based on the risk table, and significant differences in the probability of outcome events were observed between the high-risk (score > 2) and low-risk (score ≤ 2) groups in the derivation and external validation cohorts (P < 0.001).
Conclusion: The nomogram and the risk table using readily available clinical parameters could be new tools for bedside prediction of renal function decline in T2DKD patients.
Keywords: diabetic kidney disease, type 2 diabetes, estimated glomerular filtration rate, progression, prediction model