已发表论文

用于预测冠状病毒相关急性呼吸窘迫综合征风险的列线图的开发和验证:一项回顾性队列研究

 

Authors Zhang L, Xu J, Qi X, Tao Z, Yang Z , Chen W, Wang X, Pan T, Dai Y, Tian R, Chen Y, Tang B, Liu Z, Tan R, Qu H, Yu Y, Liu J

Received 7 November 2021

Accepted for publication 12 February 2022

Published 2 May 2022 Volume 2022:15 Pages 2371—2381

DOI https://doi.org/10.2147/IDR.S348278

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Professor Suresh Antony

Background: Since the outbreak of coronavirus disease (COVID-19) in December 2019 in Wuhan, it has spread rapidly worldwide. We aimed to establish and validate a nomogram that predicts the probability of coronavirus-associated acute respiratory distress syndrome (CARDS).
Methods: In this single-centre, retrospective study, 261 patients with COVID-19 were recruited using positive reverse transcription–polymerase chain reaction tests for severe acute respiratory syndrome coronavirus 2 in Tongji Hospital at Huazhong University of Science and Technology (Wuhan, China). These patients were randomly distributed into the training cohort (75%) and the validation cohort (25%). The factors included in the nomogram were determined using univariate and multivariate logistic regression analyses based on the training cohort. The area under the receiver operating characteristic curve (AUC), consistency index (C-index), calibration curve, and decision curve analysis (DCA) were used to evaluate the efficiency of the nomogram in the training and validation cohorts.
Results: Independent predictive factors, including fasting plasma glucose, platelet, D-dimer, and cTnI, were determined using the nomogram. In the training cohort, the AUC and concordance index were 0.93. Similarly, in the validation cohort, the nomogram still showed great distinction (AUC: 0.92) and better calibration. The calibration plot also showed a high degree of agreement between the predicted and actual probabilities of CARDS. In addition, the DCA proved that the nomogram was clinically beneficial.
Conclusion: Based on the results of laboratory tests, we established a predictive model for acute respiratory distress syndrome in patients with COVID-19. This model shows good performance and can be used clinically to identify CARDS early.
Trial Registration: Ethics committee of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (No.:(2020) Linlun-34th).
Keywords: COVID-19, CARDS, nomogram, risk factor, prediction