论文已发表
注册即可获取德孚的最新动态
IF 收录期刊
携带二氢叶酸合酶的嗜麦芽窄食单胞菌的抗菌组合的体外抗菌活性和耐药性预防
Authors Zhao J, Huang Y, Li J, Zhang B, Dong Z , Wang D
Received 28 March 2022
Accepted for publication 3 June 2022
Published 13 June 2022 Volume 2022:15 Pages 3039—3046
DOI https://doi.org/10.2147/IDR.S368338
Checked for plagiarism Yes
Review by Single anonymous peer review
Peer reviewer comments 3
Editor who approved publication: Professor Suresh Antony
Background: Stenotrophomonas maltophilia (S. maltophilia ) is a multidrug-resistant gram-negative bacillus that is known to be an opportunistic pathogen, particularly in a hospital environment. The infection has a high morbidity and mortality. Sulfamethoxazole-trimethoprim (SXT) is the first-line agent recommended for its treatment. The global spread of dihydropteroate synthase (sul ) genes has resulted in an increased resistance rate. However, the appropriate therapy for infections caused by sul-carrying S. maltophilia has not yet been established.
Objective: Our study aimed to identify the optimal antibiotic combinations that could both show high antibacterial activity against sul-carrying S. maltophilia and the ability to prevent the emergence of resistance at clinical dosage regimens.
Methods: Time-killing experiments and mutant prevention concentration (MPC) experiments were conducted to evaluate the antibacterial effect and ability to prevent resistance to minocycline, tigecycline, moxifloxacin, and ticarcillin/clavulanic acid (T/K), both alone and in combination, at clinically relevant antimicrobial concentrations.
Results: Minocycline, tigecycline, and T/K all exhibited bacteriostatic activity to sul-carrying S. maltophilia . The combination of minocycline plus T/K and tigecycline plus T/K neither enhanced the bactericidal ability nor prevented drug-resistant mutations. Moxifloxacin, at 2 mg/L, showed good bactericidal activity to most S. maltophilia , but bacterial regrowth at 24 h was observed in two strains. When combined with T/K, moxifloxacin showed good bactericidal activity in all moxifloxacin-sensitive strains. The concentrations of moxifloxacin alone were lower than most MPCs of the tested sul-carrying strains. When combined with T/K, the mean steady-state concentrations (MSC) of moxifloxacin could prevent 70% of resistance, and the peak concentration (Cmax) prevented 95% of resistance.
Conclusion: The combination of moxifloxacin and T/K can achieve a good in vitro bactericidal effect and prevent the emergence of resistance at clinical dosage regimens, and may be an optimal therapeutic strategy for S. maltophilia infections, especially for vulnerable immunocompromised and critically ill patients.
Keywords: sulfamethoxazole-trimethoprim, dihydropteroate synthase, moxifloxacin, mutant prevention concentration, pharmacokinetic, Cmax