论文已发表
注册即可获取德孚的最新动态
IF 收录期刊
聪明的 Fe3O4@ZnO 核壳型纳米光敏剂在 UVA 辐射控制下的联合化疗和光动力皮肤癌治疗中的潜力
Authors Ren Q, Yi C, Pan J , Sun X, Huang X
Received 26 April 2022
Accepted for publication 11 July 2022
Published 1 August 2022 Volume 2022:17 Pages 3385—3400
DOI https://doi.org/10.2147/IJN.S372377
Checked for plagiarism Yes
Review by Single anonymous peer review
Peer reviewer comments 3
Editor who approved publication: Dr Yan Shen
Purpose: Photodynamic therapy (PDT) is a non-invasive therapeutic modality that is used for several types of cancer and involves three essential elements (light, photosensitizer (PS), and oxygen). However, clinical PS is limited by the low yield of reactive oxygen species (ROS) and a long retention time. Therefore, developing a low-cost PS that can significantly increase ROS yield in a short time is of utmost importance.
Methods: In this study, brusatol (Bru) was loaded on the surface of ultraviolet A (UVA)-responsive zinc oxide (ZnO)-coated magnetic nanoparticles (Fe3O4@ZnO-Bru). The PS was well characterized by transmission electron microscopy (TEM), Fourier Transform infrared spectroscopy (FTIR), a superconducting quantum interference device, and dynamic light scattering (DLS). 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and Hoechst staining were used to determine the inhibitory effect of Fe3O4@ZnO-Bru on squamous cell carcinoma cells (SCC) with or without UVA radiation. Intracellular ROS levels and expression of the Nrf2 signaling pathway were also determined.
Results: FTIR showed that Bru was successfully loaded on Fe3O4@ZnO. Fe3O4@ZnO-Bru was superparamagnetic, and the zeta potential was 8.86 ± 0.77 mV. The Bru release behavior was controlled by UVA. Fe3O4@ZnO-Bru with UVA irradiation induced an increase of 48% ROS productivity compared to Fe3O4@ZnO-Bru without UVA irradiation, resulting in a strong inhibitory effect on SCC. Furthermore, Fe3O4@ZnO-Bru nanocomposites (Fe3O4@ZnO-Bru NCs) had nearly no toxic effect on healthy cells without UVA radiation. The released Bru could significantly inhibit the Nrf2 signaling pathway to reduce the activity of scavenging excess ROS in SCC.
Conclusion: In this study, Fe3O4@ZnO-Bru was successfully synthesized. PDT was combined with photochemotherapy, which exhibited a higher inhibitory effect on SCC. It can be inferred that Fe3O4@ZnO-Bru holds great potential for skin SCC therapy.
Keywords: UVA-triggered chemotherapy, photodynamic therapy, reactive oxygen species, magnetic targeting