已发表论文

葛根素通过 CAV3 蛋白上调减轻 H9c2 心肌细胞中高糖和高脂诱导的炎症损伤

 

Authors Tian Y, Zhou C, Bu X, Lv Q, Huang Q

Received 15 February 2023

Accepted for publication 11 June 2023

Published 29 June 2023 Volume 2023:16 Pages 2707—2718

DOI https://doi.org/10.2147/JIR.S408681

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 5

Editor who approved publication: Professor Ning Quan

Background: Inflammation plays a crucial role in the development of diabetic cardiomyopathy (DCM), including inflammation caused by high-glucose and high-lipid (HGHL). Targeting inflammation may provide a useful strategy for preventing and treating DCM. Puerarin has been shown to reduce the inflammation, apoptosis and hypertrophy of cardiomyocytes induced by HGHL, in which this study aims to investigate the underlying mechanisms.
Methods: H9c2 cardiomyocytes cultured with HGHL were used to establish a cell model of DCM. Puerarin was then placed to these cells for 24 hours. The effects of HGHL and puerarin on cell viability and apoptosis were investigated by the Cell Proliferation, Toxicity Assay Kit (CCK-8) and flow cytometry. Morphological changes of cardiomyocytes was observed by HE staining. CAV3 proteins in H9c2 cardiomyocytes were altered by transient transfection of CAV3 siRNA. IL-6 was detected by ELISA. The Western blot was performed to determine the CAV3, Bcl-2, Bax, pro-Caspase-3, cleaved-Caspase-3, NF-κB (p65) and p38MAPK proteins.
Results: Puerarin treatment reversed the cells viability, hypertrophy in morphology, inflammation (showed by p-p38 and p-p65 and IL-6) and apoptosis-related damage (showed by cleaved-Caspase-3/pro-Caspase-3/Bax, Bcl-2 and flow cytometry) of the H9c2 cardiomyocyte caused by HGHL. Puerarin treatment also restored the decrease of CAV3 proteins of the H9c2 cardiomyocyte caused by HGHL. When silenced the expression of CAV3 proteins with SiRNA, puerarin failed to decreased p-p38 and p-p65 and IL-6, and could not reversed cell viability and morphological damage. In contrast to the simple CAV3 silenced group, the CAV3 silenced with NF-κB pathway or p38MAPK pathway inhibitors, significantly downregulated the p-p38, p-p65 and IL-6.
Conclusion: Puerarin upregulated CAV3 protein expression in H9c2 cardiomyocytes and inhibited the NF-κB and p38MAPK pathways, thereby reducing HGHL-induced inflammation and may related to the apoptosis and hypertrophy of cardiomyocytes.
Keywords: puerarin, cardiomyocyte, inflammation, caveolin-3, siRNA, NF-κB, p38MAPK