已发表论文

基于深度学习的脑小血管病多模态MRI标志物及临床危险因素定量分析

 

Authors Zhang Z, Ding Z, Chen F, Hua R, Wu J , Shen Z, Shi F , Xu X 

Received 3 November 2023

Accepted for publication 12 February 2024

Published 4 March 2024 Volume 2024:17 Pages 739—750

DOI https://doi.org/10.2147/IJGM.S446531

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Scott Fraser

Background: Cerebral small vessel disease lacks specific clinical manifestations, and extraction of valuable features from multimodal images is expected to improve its diagnostic accuracy. In this study, we used deep learning techniques to segment cerebral small vessel disease imaging markers in multimodal magnetic resonance images and analyze them with clinical risk factors.
Methods and results: We recruited 211 lacunar stroke patients and 83 control patients. The patients’ cerebral small vessel disease markers were automatically segmented using a V-shaped bottleneck network, and the number and volume were calculated after manual correction. The segmentation results of the V-shaped bottleneck network for white matter hyperintensity and recent small subcortical infarction were in high agreement with the ground truth (DSC> 0.90). In small lesion segmentation, cerebral microbleed (average recall=0.778; average precision=0.758) and perivascular spaces (average recall=0.953; average precision=0.923) were superior to lacunar infarct (average recall=0.339; average precision=0.432) in recall and precision. Binary logistic regression analysis showed that age, systolic blood pressure, and total cerebral small vessel disease load score were independent risk factors for lacunar stroke (P< 0.05). Ordered logistic regression analysis showed age was positively correlated with cerebral small vessel disease load score and total cholesterol was negatively correlated with cerebral small vessel disease score (P< 0.05).
Conclusion: Lacunar stroke patients exhibited higher cerebral small vessel disease imaging markers, and age, systolic blood pressure, and total cerebral small vessel disease score were independent risk factors for lacunar stroke patients. V-shaped bottleneck network segmentation network based on multimodal deep learning can segment and quantify various cerebral small vessel disease lesions to some extent.

Keywords: lacunar stroke, cerebral small vessel disease, imaging markers, deep learning, quantification, image segmentation, clinical risk factors