论文已发表
注册即可获取德孚的最新动态
IF 收录期刊
明胶甲基丙烯酸水凝胶神经生长因子增强神经干细胞生长和分化促进脊髓损伤修复
Authors Shen M, Wang L , Li K, Tan J, Tang Z, Wang X, Yang H
Received 29 May 2024
Accepted for publication 14 October 2024
Published 19 October 2024 Volume 2024:19 Pages 10589—10604
DOI https://doi.org/10.2147/IJN.S480484
Checked for plagiarism Yes
Review by Single anonymous peer review
Peer reviewer comments 2
Editor who approved publication: Dr Sachin Mali
Mingkui Shen,1,* Lulu Wang,2,* Kuankuan Li,1 Jun Tan,1,3 Zhongxin Tang,1 Xiaohu Wang,4 Hejun Yang1
1Department of Mini-Invasive Spinal Surgery, The Third People’s Hospital of Henan Province, Zhengzhou, Henan, 450006, People’s Republic of China; 2Department of Plastic Surgery, The Third People’s Hospital of Henan Province, Zhengzhou, Henan, 450006, People’s Republic of China; 3Department of Clinical Medicine, Zhengzhou University, Zhengzhou, 450001, People’s Republic of China; 4Department of Orthopedics, Zhengzhou Central Hospital, Zhengzhou, 450007, People’s Republic of China
*These authors contributed equally to this work
Correspondence: Hejun Yang, Department of Mini-invasive Spinal Surgery, The Third People’s Hospital of Henan Province, Intersection of Zhengguang Road and Minsheng Road, Jinshui District, Zhengzhou, Henan, 450006, People’s Republic of China, Email hejunyang02@163.com
Background: The challenge in treating irreversible nerve tissue damage has resulted in suboptimal outcomes for spinal cord injuries (SCI), underscoring the critical need for innovative treatment strategies to offer hope to patients.
Methods: In this study, gelatin methacrylic acid hydrogel scaffolds loaded with nerve growth factors (GMNF) were prepared and used to verify the performance of SCI. The physicochemical and biological properties of the GMNF were tested. The effect of GMNF on activity of neuronal progenitor cells (NPCs) was investigated in vitro. Histological staining and motor ability was carried out to assess the ability of SCI repair in SCI animal models.
Results: Achieving nerve growth factors sustained release, GMNF had good biocompatibility and could effectively penetrate into the cells with good targeting permeability. GMNF could better enhance the activity of NPCs and promote their directional differentiation into mature neuronal cells in vitro, which could exert a good neural repair function. In vivo, SCI mice treated with GMNF recovered their motor abilities more effectively and showed better wound healing by macroscopic observation of the coronal surface of their SCI area. Meanwhile, the immunohistochemistry demonstrated that the GMNF scaffolds effectively promoted SCI repair by better promoting the colonization and proliferation of neural stem cells (NSCs) in the SCI region and targeted differentiation into mature neurons.
Conclusion: The application of GMNF composite scaffolds shows great potential in SCI treatment, which are anticipated to be a potential therapeutic bioactive material for clinical application in repairing SCI in the future.
Keywords: hydrogel scaffold, nerve growth factor, spinal cord injury, neuronal regeneration