已发表论文

阳离子聚合物修饰的 PLGA 纳米粒子包裹 Alhagi 蜂蜜多糖作为卵清蛋白的疫苗递送系统,以改善免疫反应

 

Authors Wusiman A, Gu P, Liu Z, Xu S, Zhang Y, Hu Y, Liu J, Wang D, Huang X

Received 26 January 2019

Accepted for publication 3 April 2019

Published 6 May 2019 Volume 2019:14 Pages 3221—3234

DOI https://doi.org/10.2147/IJN.S203072

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Cristina Weinberg

Peer reviewer comments 5

Editor who approved publication: Dr Linlin Sun

Background: Poly (lactic-co-glycolic acid) (PLGA) nanoparticles and surface modified PLGA nanoparticles have been widely studied as antigens or drugs carriers due to their controlled release characteristics and biocompatibility. However, most PLGA nanoparticles have lower antigens loading efficiency and adjuvanticity.
Purpose: The aim of this study was to improve the antigen loading efficiency and adjuvant activity of PLGA nanoparticles.
Materials and methods: Surface cationic polymer modification can improve the antigens loading efficiency of PLGA nanoparticles by surface adsorption. Therefore, in this study, chitosan modified PLGA nanoparticles (CS-AHPP/OVA), polyethyleneimine modified PLGA nanoparticles (PEI-AHPP/OVA), and ϵ-Poly-L-lysine modified PLGA nanoparticles (ϵPL-AHPP/OVA) were prepared as antigen delivery carriers to investigate the characterization and stability of these nanoparticles. These nanoparticles were evaluated for their efficacies as adjuvants pre- and post-modification.
Results: The AHP and OVA-loaded PLGA nanoparticles (AHPP/OVA) were positively charged after surface cationic polymers modification, and their structural integrity was maintained. Their antigen loading capacity and stability of nanoparticles were improved by the surface cationic polymers modification. Increased positive surface charge resulted in greater OVA adsorption capacity. Among AHPP/OVA and the three surface cationic polymers synthesized from modified PLGA nanoparticles, PEI-AHPP/OVA showed the highest antigen loading efficiency and good stability. AHPP/OVA, CS-AHPP/OVA PEI-AHPP/OVA, and ϵPL-AHPP/OVA formulations significantly enhanced lymphocyte proliferation and improved the ratio of CD4+/CD8+ T cells. In addition, AHPP/OVA, PEI-AHPP/OVA and ϵPL-AHPP/OVA formulations induced secretion of cytokines (TNF-α, IFN-γ, IL-4, and IL-6), antibodies (IgG) and antibody subtypes (IgG1 and IgG2a) in immunized mice. These results demonstrate that these formulations generated a strong Th1-biased immune response. Among them, PEI-AHPP/OVA induced the strongest Th1-biased immune response.
Conclusion: In conclusion, PEI-AHPP/OVA nanoparticles may be a potential antigen delivery system for the induction of strong immune responses.
Keywords: Alhagi honey polysaccharides, cationic polymer, poly(lactic-co-glycolic acid), nanoparticles, OVA




Figure 6 HE staining of spleens of immunized mice at day 35 after final vaccination. Scale bar represents 100 nm.