已发表论文

光热转化剂和化疗用的共载静电纺丝纳米纤维用于肿瘤治疗

 

Authors Zhao J, Zhu Y, Ye C, Chen Y, Wang S, Zou D, Li Z

Received 25 January 2019

Accepted for publication 9 April 2019

Published 27 May 2019 Volume 2019:14 Pages 3893—3909

DOI https://doi.org/10.2147/IJN.S202876

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Jiang Yang

Peer reviewer comments 4

Editor who approved publication: Dr Linlin Sun

Background: Photothermal and chemotherapy treatment has been frequently studied for cancer therapy; however, chemotherapy is equally toxic to both normal and cancer cells. The clinical application value of most kinds of photothermal transforming agents remains limited, due to their poor degradation and minimal accumulation in tumors.
Materials and methods: We reported the synthesis of photothermal transforming agents (MoS2) and chemotherapeutic (doxorubicin, DOX) co-loaded electrospun nanofibers using blend electrospinning for the treatment of postoperative tumor recurrence.
Results: Under the irradiation of an 808 nm laser, the as-prepared chitosan/polyvinyl alcohol/MoS2/DOX nanofibers showed an admirable photothermal conversion capability with a photothermal conversion efficiency of 23.2%. These composite nanofibers are in vitro and in vivo biocompatible. In addition, they could control the sustained release of DOX and the generated heat can sensitize the chemotherapeutic efficacy of DOX via enhancing its release rate. Their chemo-/photothermal combined therapy efficiency was systematically studied in vitro and in vivo. Instead of circulating with the body fluid, MoS2 was trapped by the nanofibrous matrix in the tumor and so its tumor-killing ability was not compromised, thus rendering this composite nanofiber a promising alternative for future clinical translation within biomedical application fields.
Conclusion: Chitosan/polyvinyl alcohol/MoS2/DOX nanofibers showed an excellent photothermal conversion capability with a photothermal conversion efficiency of 23.2% and can completely inhibit the postoperative tumor reoccurrence.
Keywords: electrospinning, chitosan, chemotherapy, photothermal tumor therapy, tumor




Figure 3 In vitro photothermal performance of nanofibers...